H2020 project
Call: H2020-BG-2018-2020 (Blue Growth)
Topic: LC-BG-03-2018

Starting date: September 1, 2019
Duration: 48 months

D5.2

Title: Report on Initial Demographic Parameters

(Review, Sampling and Estimation of Key Demographic Parameters for Pearlside Maurolicus muelleri \& Glacier Lantern Fish Benthosema glaciale)

Due date:

October 31, 2021 (Month 26)

Organization name of lead participant for this deliverable:
Danmarks Tekniske Universitet (DTU)

Dissemination level		x
PU	Public	Confidential, only for members of the consortium (incl the Commission
Services)		

Deliverable number:	D.5.2
Deliverable title:	Report on Initial Demographic Parameters
Work package:	5
Lead participant:	Danmarks Tekniske Universitet (DTU)

Author(s)		
Name	Organisation	E-mail
J. Rasmus Nielsen*	Danmarks Tekniske Universitet (DTU) Universitet (DTU)	rn@aqua.dtu.dk
Contributing partner(s)		
Douglas Speirs*	University of Strathclyde (STRATH)	d.c.speirs@strath.ac.uk
Berthe Vastenhoud*	Danmarks Tekniske Universitet (DTU)	bmjv@aqua.dtu.dk
Silvia Paoletti*	DTU	silviapaoletti95@gmail.com
Sieme Bossier*	DTU	siebo@aqua.dtu.dk
Klara Jakobsdóttir*	Hafrannsoknastofnun, Rannsokna- og Radgjafar-stofnun Hafs og Vatna (MFRI)	klara.jakobsdottir@hafogvatn.is
Sigurður Pór Jónsson*	MFRI	sigurdur.thor.jonsson@hafogvatn.is
Ástpór Gíslason*	MFRI	astthor.gislason@hafogvatn.is
Paula Alvarez*	FUNDACION AZTI AZTI FUNDAZIOA (AZTI)	palvarez@azti.es
Dorleta Garcia*	AZTI	dgarcia@azti.es
Guillermo Boyra*	AZTI	gboyra@azti.es
Thor Klever*	Havforskningsinstituttet (IMR)	thor.klevjer@hi.no
Alina Wieczorek*	Marine Institute (MI)	alina.wieczorek@marine.ie
Eduardo Grimaldo*	SINTEF OCEAN AS (SO)	Eduardo.Grimaldo@sintef.no

Leif Grimsmo*	SO	Leif.Grimsmo@sintef.no
Ragnhild Whitaker*	NOFIMA AS	ragnhild.whitaker@nofima.no
Runar Gjerp Solstad*	NOFIMA AS	runar.gjerp.solstad@nofima.no

*authorship equal and all are corresponding author(s)

Keywords

Initial and key demographic and gear selectivity parameters; review, sampling and estimation; population dynamics; stock assessment; biological and ecosystem modelling; mesopelagic species; Pearlside (Maurolicus muelleri); Glacier Lantern Fish (Benthosema glaciale);

Executive Summary

The Deliverable D5.2 Report on Initial Demographic Parameters compiles information and data on key demographic parameters and gear selectivity parameters to be used to parameterize the stock assessment and biological community and ecosystem-based models and methods applied under MEESO WP5. This covers input to parameterization of i) the population dynamic and length based single stock assessment methods in the form of the TrophFishR and S6 models, ii) the StrathSPACE spatially explicit single-species models for target mesopelagic fish species, iii) the NORWECOM.E2E model for the food-web and vertical carbon flux, and iv) the SEAPODYM model for biomass and dynamics of mesopelagic functional groups.

The report presents a review of existing information on key demographic parameters from published literature as well as current outputs so far collated from MEESO. This includes outputs from the work packages (WPs) on fishing technology development with respect to e.g. gear selectivity parameters influencing length (and age) frequency sampling (MEESO WP3), and the field campaign data sampling with provision and estimation of initial biological parameters (MEESO WP4). The field campaign data also includes other research survey sampling (MEESO WP2), and sampling from commercial fishery (MEESO WP3 in cooperation with MEESO WP5). This is done in order to provide initial parameters and fitting data for the WP5 modelling tasks for the main species and stocks focused upon in the project, i.e. especially Benthosema glaciale and Maurolicus muelleri. These initial parameters will be updated later during the continued course of the field campaign and field data analyses. It should be emphasized that these parameters are initial and only very preliminary and that analyses are still ongoing on the input data from the MEESO research survey and different periods of commercial fishery sampling. Because the stock identities and delineations, as well as the migration patterns of the two species, are not fully known from the incomplete coverage of the sampling in the various existing studies, it is not known to which extent all stocks and stock
components (life stages) are covered according to the presented parameters in this report. Accordingly, the parameters should overall be used with great caution.

For example, the key requirements for the assessment models (MEESO Task 5.2, T5.2) are population length distributions obtained from surveys, technologicall or commercial trial fishery haul catches, and from acoustic survey data; estimates of the maturity ogive (proportion mature at size); weight-length relationship; and size selectivity of fishing gear. Life-history parameters (allometric exponent, energy allocation to activity and reproduction, recruitment efficiency) also required for T5.2 (and T5.3 below). The latter can also be obtained from the literature on related taxa and established life-history scaling rules. Using age-given-length data from surveys or commercial trial fisheries, natural mortality rates will be obtained from vertical lifetable analysis in order to provide estimates independent of those of the purely sizebased methods in T5.2. The spatial and ecosystem models in T5.3 will explore climate change scenarios which require the additional quantification of growth and/or mortality rates as functions of temperature and/or food availability. For the latter stomach content data, survey estimates of prey availability, and existing digestion rate models will be used to provide the best available estimates of feeding rate parameters of key taxa as a function of the prey field and temperature.
TABLE OF CONTENTS1.0 LITERATURE REVIEW ON KEY DEMOGRAPHIC PARAMETERS FOR PEARLSIDE (MAUROLICUS MUELLERI) 7
2.0 LITERATURE REVIEW ON KEY DEMOGRAPHIC PARAMETERS FOR GLACIER LANTERN FISH (BENTHOSEMA GLACIALE) 16
3.0 KEY DEMOGRAPHIC (BIOLOGICAL) PARAMETERS FOR PEARLSIDE (MAUROLICUS
MUELLERI) AND GLACIER LANTERN FISH (BENTHOSEMA GLACIALE) COLLATED AND ESTIMATED FROM MEESO SURVEY SAMPLING (WORK PACKAGES 4 \& 2 \& 5) 22
4.0 KEY DEMOGRAPHIC (BIOLOGICAL) PARAMETERS FOR PEARLSIDE (MAUROLICUS MUELLERI) ESTIMATED FROM SURVEY DATA IN TROPFISHR (MEESO WORK PACKAGE 5)30
5.0 OVERVIEW OF ENVIRONMENTAL DATA COLLATED DURING MEESO RESEARCH SURVEYS ASSOCIATED TO BIOLOGICAL SAMPLING OF KEY DEMOGRAPHIC (BIOLOGICAL) PARAMETERS (MEESO WORK PACKAGE 4) 33
6.0 KEY DEMOGRAPHIC (BIOLOGICAL) PARAMETERS FOR PEARLSIDE (MAUROLICUS MUELLERI) COLLATED AND ESTIMATED FROM COMMERCIAL FISHERY SAMPLING (MEESO WORK PACKAGE 3 \& 5) 35
7.0 INITIAL COMMERCIAL FISHING GEAR SELECTIVITY PARAMETERS FOR PEARLSIDE (MAUROLICUS MUELLERI) AND GLACIER LANTERN FISH (BENTHOSEMA GLACIALE) AS ESTIMATED FROM THE FISHING TECHNOLOGY DEVELOPMENT WORK PACKAGE 3 37

1.0 Literature Review on Key Demographic Parameters for Pearlside (Maurolicus muelleri)

1.1 Introduction

The silvery lightfish or pearlside Maurolicus muelleri is a small planktivorous mesopelagic fish inhabiting global oceanic waters, and largely concentrated in the temperate waters of the Atlantic and Pacific Ocean (FishBase, 2020). The lightfish is a short-lived species with a lifespan of about 3 years and maximum length of 7 cm (Gjösæter, 1981). Maturity is reached after one year of juvenile life and fecundity is high (Salvanes and Sockley, 1996). Maurolicus muelleri feeds on copepods and euphausiids, and is itself predated on mainly by blue whiting and saithe (Gjösæter, 1981). Feeding and predatory avoidance strategies in lightfish involve diel vertical migration. The species makes use of light intensity to regulate their vertical distribution in the water column, residing closer to the surface at night and deeper in the water column during daylight (Staby et al., 2011). Its depth ranges from 50 to 400 meters, and is dependent on the ontogenetic phase of the individuals and on the time of day (Dalpadado and Gjösaeter, 1987; Staby et al., 2013). Together with the northern lanternfish Benthosema glaciale, the species is the most abundant mesopelagic fish in Norwegian and North Atlantic waters (Rasmussen and Giske, 1994). Following the abundances and the distribution profiles, the two fish species represent suitable and appealing targets for mesopelagic fishery activities. Due to the high body content of valuable omega-3 polyunsaturated fatty acids, the species is mainly targeted for industrial purposes involving processing the harvested resources for fish meal, oil production and nutraceuticals (Prellezo, 2019).

1.2 Review Results and Overview

Table 1.1. Parameters of life-history traits and biology of pearlside Maurolicus muelleri at different locations in different periods from the published literature. The outcome of the literature review shows that research has been mainly focused on North-East Atlantic waters. Additional available information on taxonomically-close species Maurolicus stehmanni are added for comparison.

Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	Von Bert. $L_{\text {inf }}$ (mm)	Weight (g)	Von Bert. $\mathbf{W}_{\text {inf }}$ (g)	$\begin{gathered} \text { L50/ } \\ \text { Maturity/ } \\ \text { Fecundity } \end{gathered}$	Sex ratio	Natural mortality M $\left(y^{-1}\right)$	LWrelationship	$\begin{gathered} \text { Growth } \\ \text { parameter k } \end{gathered}$	Other
$\begin{aligned} & \text { Sobradillo et al., } \\ & 2019 \end{aligned}$	Acoustic-trawl survey with pelagic trawl	$\begin{gathered} \text { Bay of Biscay in } \\ \text { September } \\ 2014-2017 \end{gathered}$	```Day (deeper) and night (shallower) Between 15 and 300 meters```	283	Min: 26 ± 3 Max: 49 ± 9	-	-	-	${ }^{-}$	-	-	\square	-	-
Staby et al., 2013	Acoustic-trawl survey with pelagic trawl	Masfjorden in Nov 2007	Temperatur e recorded between 35 and 160 meters. Recordings from 00:00 to 12:30	-	-	-	-	-		-	-	$\mathrm{W}=0.0082^{*} \mathrm{~L}^{3.18}$	-	Vertical migration patterns described below
Staby et al., 2011	Acoustic-trawl survey with harstad trawl	$\begin{aligned} & \text { Masfjorden in } \\ & \text { Nov } 2007 \text { and } \\ & \text { Oct } 2008 \end{aligned}$	$\mathrm{T}=8.6 \mathrm{C}$ below 90 m $\mathrm{~T}=14.8 .5 \mathrm{C}$ above 80 m. Recordings between $0: 00$ and 14:00 between 35 and 280 m	-	Post-larvae 11 mm Juvenile 21 mm Adult 43 mm	-	-	-	-	-	-	-	-	Vertical migration patterns described below

Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temperature	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \text { Von Bert. } \\ & L_{\text {inf }} \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $\mathbf{W}_{\text {inf }}$ (g)	$\begin{gathered} \text { L50/ } \\ \text { Maturity/ } \\ \text { Fecundity } \end{gathered}$	$\begin{aligned} & \hline \text { Sex } \\ & \text { ratio } \end{aligned}$	$\begin{gathered} \text { Natural } \\ \text { mortality } \\ M \\ \left(y^{-1}\right) \end{gathered}$	LW- relationship	Growth parameter k	Other
Kristoffensen, 2007	Biological survey with harstad trawl	$\begin{aligned} & \text { Norwegian } \\ & \text { fjords and open } \\ & \text { waters in } \\ & \text { summer } 1995 \\ & \text { and } 1996 \end{aligned}$	-	FJ1-95: Male 63 Female 50 FJ1-96: Male 88 Female 121 FJ2-95: Male 43 FJ3-95: Male 21 FJ3-96: Male 28 Female 40 FJ4-96: Male 41 Female 78 OW-96: Male 43 Female 47	$\begin{aligned} & \text { Min: } 20 \\ & \text { Max: } 66 \end{aligned}$	FJ1-95: Male 43.8 Female 45.0 FJ1-96: Male 44.8 Female 50.6 FJ2-95: Male 44.9 FJ3-95: Male 45.8 FJ3-96: Male 46.2 Female 51.5 FJ4-96: Male 57.2 Female 61.2 OW-96: Male 56.3 Female 56.4	-	-	-	-	-	-	FJ1-95: Male 0.88 Female 1.52 FJ1-96: Male 0.98 Female 0.63 FJ2-95: Male 1.27 FJ3-95: Male 1.47 FJ3-96: Male 1.11 Female 2.00 FJ4-96: Male 1.24 Female 1.45 OW-96: Male 1.22 Female 1.29	t_{o} FJ1-95: Male -0.02 Female 0.60 FJ1-96: Male 0.16 Female -0.57 FJ2-95: Male 0.32 FJ3-95: Male 1.11 FJ3-96: Male 0.34 Female 0.83 FJ4-96: Male 0.62 Female 0.61 OW-96: Male 0.47 Female 0.40
Kristoffensen and Salvanes, 1998	Biological survey with harstad trawl	Norwegian fjords and open waters in summer 1995 and 1996	-	$\begin{gathered} \text { OW: } \\ 314 \\ 1955 \\ 2568 \end{gathered}$	OW Mean TL: 36.1 34.5 43.4	-	-	-	-	-	Age based OW Male 2.55 Female 2.00 Fjords Male 1.15 Female 0.97	-	-	-
Salvanes and Sockley, 1996	Biological survey with harstad trawl	Norwegian fjords and open waters in March-April 1995	During the day between 45 and 350 metres (upper and lower layers)	North 134 Coast 103 Fjord 170	North Min: 24 Max: 63 Mean: 45.2 South Min: 23 Max: 57 Mean: 38.9 Coast Min 46 Max: 63 Mean: 53.16 Fjord Min: 23 Max: 49 Mean: 23.95	-	North Mean 1.11 South Mean 0.81 Coast Mean 1.59 Fjord Mean 0.68	-	Fecundity North 16577 South 13331 Coast 36848 Fjord 16259 South $R=8561.14$ +13.54W Coast and Fjord R=5578.18+ 13.22 W	North 6:5 South 13:4 Coast 1:1 Fjord 10:59 upper lower	-		-	$\begin{gathered} \mathrm{TL}=2.41+1.1 \\ 3^{*} \mathrm{SL} \end{gathered}$
Goodson et al., 1995	$\begin{aligned} & \text { Biological } \\ & \text { survey with } \end{aligned}$ harstad trawl	Herdlefjorden in Jan-Jun 1994	Between morning and evening between 70 and 270 metres depth	150 per period and age group	-	-	-	-	Max immature size 40 mm TL Min mature size 31 mm TL Maturity is reached at age-1	-	-		From body weight: Age-1: Jan-Mar 0.008 g/g*d Mar-May 0.020 g/g*d Age-2+: Jan-Mar 0.004 g/g*d Mar-May 0.007 g/g*d	$\begin{gathered} \mathrm{SL}=0.17+0.8 \\ 5^{*} \mathrm{TL} \end{gathered}$

												$\begin{aligned} & \text { May } \ln (\text { FW })=- \\ & 3.59+0.070 \mathrm{TL} \end{aligned}$		
Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temperat ure	Sample size (N)	Observed Standard Length (mm)	Von Bert. $L_{\text {inf }}$ (mm)	Weight (g)	Von Bert. $\mathbf{W}_{\text {inf }}$ (g)	L50/ Maturity/ Fecundity	$\begin{gathered} \text { Sex } \\ \text { ratio } \end{gathered}$	Natural mortality M $\left(y^{-1}\right)$	LWrelationship	Growth parameter k	Other
Rasmussen and Giske, 1994	Biological survey with harstad trawl	Masfjorden in May-June 1990	All range of 24h between 0 and 270 metres	1350	Min 23 Max 59 Peaks 29 and 42	-	Min 0.12 Max ~1.4	-	Min mature size for both sexes 29 mm SL For females 24 mm $\mathrm{F}=\underset{05}{0.0072} \mathrm{~L}^{3 .}$ ($\mathrm{N}=83$) Mean egg n. 675	Size- classes $23-26:$ 0.27 $27-29:$ 0.89 $00-32:$ 1.96 $33-35:$ 6.67 $36-38:$ 7.25 $39-41:$ 9.00 $42-44:$ 14.50 $45-48:$ 31.00	Length based: 0.84/y Higher in males	$\begin{gathered} \mathrm{W}=9.0^{*} \mathrm{O}_{10.6 * *} \mathrm{~L}^{3.03} \\ (\mathrm{~N}=800) \end{gathered}$	-	-
Gjöseter, 1981	\qquad Bio pelagic or krill traw		-	Growth $\mathrm{N}=651$ and 711 LW rel $\mathrm{N}=97,36$ and 95	Max 70 mm Autumn age-0 $16-48 \mathrm{~mm}$ Mean age-0 24.77 mm Mean age-1 40.33 mm	$\begin{gathered} \text { Fjords } 48.8 \\ \text { Ocean } 59.4 \\ \text { All } \\ \text { combined } \\ 57.09 \end{gathered}$	$\begin{gathered} \hline \text { Mean } \\ 2.24 \end{gathered}$	$\begin{gathered} \text { All } \\ \text { combined } \\ 2.24 \end{gathered}$	$\begin{gathered} \text { Minimum } \\ \text { female } S L 39 \\ \mathrm{~mm} \end{gathered}$	-	Age based: 1.8	$\begin{gathered} \text { Fjords autumn } \\ \text { W=1.41*10 } 0^{-5 *} \mathrm{~L}^{2.97} \\ \text { Fjords spring } \mathrm{W} \\ =6.46^{*} 10^{-5 *} \mathrm{~L}^{2.42} \\ \text { Ocean spring } \\ \mathrm{W}=3.63^{*} 10^{-6 *} \mathrm{~L}^{3.33} \\ \text { Pooled sample } \\ \mathrm{W}=2.04^{*} 10^{-5} \mathrm{~L}^{2.87} \end{gathered}$	Fjords 1.05 Ocean 0.88 All combined 0.94 \mathbf{t}_{0} Fjords -0.21 Ocean 0.06 All combined -0.14	Annual production considering pooled sample is $\mathrm{P}=0.23 \mathrm{~N}$, $\mathrm{g} /$ fish; $\mathrm{MSY}=0.17$ $\mathrm{~g} /$ recruit
Lopes, 1979	Biological planktonic and larval survey with bongo net	Masfjorden and Fensfjorden in Apr-Sep 1977		-	-	-	-	-	-	50:50	-	-	-	Egg abundances Masforden $9^{*} 10^{10}$ eggs Fensfjorden $56^{*} 10^{10}$ SSB=E/F *S*W Masfjorden $6.6^{*} 10^{\circ}$ tons Fensfjorden $30,7^{*} 10^{9}$
Fish base (with no references)	-	-	-	-	Max 80 mm TL Mean 40 mm TL	-	-	-	F=200-500	-	-	$\begin{gathered} \mathrm{W}=4.6^{*} 10^{-3} \mathrm{TL}^{3.16} \\ \text { Range for } a= \\ \text { o.00197 }-0.01063 \\ \text { Range for } b=2.95 \\ -3.37 \\ \hline \end{gathered}$	0.88	Trophic level= 3 ± 0
Young et al., 1987	Biological survey with pelagic trawl	$\begin{aligned} & \text { Tasmania from } \\ & \text { Apr } 1984 \text { to Jun } \\ & 1985 \end{aligned}$	Temperatur e and sampling recorded around 200m. Mean $\mathrm{T}_{200} 11.6-$ 13.5 C	141	Min 34 Max 54 Length-distr available divided in size classes, sex and months	-	-	-	$\begin{gathered} \hline \text { Observed } \\ \text { mature } \\ \text { female } 38 \text { - } \\ 53 \mathrm{~mm} \\ \text { Observed } \\ \text { mature male } \\ 34-46 \mathrm{~mm} \end{gathered}$	2.64:1	-	-	-	-

Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temperat ure	Sample size (N)	Observed Standard Length (mm)	Von Bert. $L_{\text {inf }}$ (mm)	Weight (g)	Von Bert. $\mathbf{W}_{\text {inf }}$ (g)	L50/ Maturity/ Fecundity	Sex ratio	$\begin{aligned} & \hline \text { Natural } \\ & \text { mortality } \\ & M \\ & \left(y^{-1}\right) \end{aligned}$	LWrelationship	Growth parameter k	Other
$\begin{gathered} \text { Battaglia et al } \\ 2010 \end{gathered}$	----	Strait of Messina, central Mediterranean sea. 2007-2009	Samples collected before the sunrise.	93	$\begin{aligned} & \text { SL: 12.00-50.0 } \\ & \text { TW: o.02-2.10 } \\ & \text { gr. } \end{aligned}$									
Dalpadado and Gjøsaeter, 1987	Acoustic-trawl survey with pelagic or krill trawl	Red Sea in March 1981	During the 24 h mainly a night between 20 and 350. $\mathrm{~T}=22 \mathrm{C}$ at $220-280 \mathrm{~m}$	82	$\begin{aligned} & \text { Female range } \\ & 20-40 \mathrm{~mm} \\ & \text { Male range 14- } \\ & 34 \mathrm{~mm} \\ & \text { Max } 40 \mathrm{~mm} \end{aligned}$	-	-	-	Min Female 20 Male 19 logF=2.657*। og(L-1.545)		-		-	-
Clarke, 1982	Biological survey with pelagic trawl	NSW and Tasmania ~1977	$\begin{aligned} & \text { Between } 50 \\ & \text { and } 400 \\ & \text { metres } \end{aligned}$	-	Min 23 Max 50 Size-age roups: $23-39 \mathrm{~mm}$ (33-43 at age-1) $43-50 \mathrm{~mm}$ (45-50 at age-2)	\cdot	-	-	$\underset{\substack{\mathrm{F}=-788+25.7 * \mathrm{SL}}}{ }$		-	-	-	${ }^{-}$
Prosch, 1991	Biological survey with bongo net and commercial samples	Benguela ecosystem monthly from Aug 1977 to Aug 1978	$\mathrm{T}=13-15 \mathrm{C}$ at 40 metres along the year	-	Max 53 mm	-	-	-	Min observed Female 26 mm SL Male 24 mm SL	1.2:1	-	-	-	Fecundity of mean 334 eggs/g (161738 eggs/g)
$\begin{gathered} \hline \text { Boehrlet et al } \\ 1994 \\ \hline \end{gathered}$														
Ikeda, 1996	Biological survey with mid-watertrawl net and larvae nets	Japan Sea in 1988-1992	At night	312	Min 3.6 mm TL Max 53.0 mm TL Mean 36.0 mm TL	$\underset{\substack{\text { TLinf } \\ \mathrm{mm}}}{ }$	$\begin{gathered} \text { Min } 0.15 \\ \text { Max } \\ 1.238 \end{gathered}$	-	-	-	-	$\begin{gathered} \text { Allometric } \\ \mathrm{W}=0.00211^{*} * \mathrm{TL}^{3.346} \end{gathered}$	$\begin{gathered} 1.19 \\ \left(\mathrm{t}_{0}=0.65\right) \end{gathered}$	$\begin{aligned} & \text { Life span of } \\ & 1.8 \text { years } \\ & \text { (20-22 } \\ & \text { months) } \end{aligned}$
$\begin{gathered} \hline \text { Bellucco et al., } \\ 2004 \end{gathered}$	Acoustic-traw survey with Mid-watertrawl net	$\begin{gathered} \text { Brazil in Jul } \\ \text { 1996-Dec } 1997 \end{gathered}$	-	-	-	$\begin{aligned} & \text { Linf=53-55 } \\ & \mathrm{mm} \end{aligned}$	-	-	${ }^{-}$		-	${ }^{-}$	0.0097-0.0088 d ${ }^{-1}$	$\mathrm{t}_{0}=8.03-5.5 \mathrm{~d}$
\qquad	Acoustic-trawl survey with Mid-watertrawl net	$\begin{gathered} \text { Brazil in Jul } \\ \text { 1996-Dec } 1997 \end{gathered}$	-	6132	Min 12 mm Max 52 mm	Linf 53 mm	-	-	L50 $=32 \mathrm{~mm}$ Min observed Female 24 mm Male 23 mm	1:1	-	$\mathrm{W}=2.0 * 10^{-5 * L^{2.89}}$	-	-

[^0]
1.3 Additional relevant information available in the above-mentioned literature

Sobradillo et al., $2019 \rightarrow$ A vertical distribution profile is available. No length-frequency distribution graph displayed.

Kristoffensen, $2007 \rightarrow$ Temperature was recorded at sampling depth but not shown in a table. Temperature was about 1 degree lower in the open waters compared to the fjords environment.

Kristoffensen and Salvanes, $1998 \rightarrow$ Temperature was recorded at sampling depth but not shown in a table. The temperature regime experienced by the fish is different in the open sea than in the fjords. In the fjords, the temperature at different water layers is stable and similar in values from one fjord to another. The open waters have a warmer upper layer and a colder deeper layer. Mean instantaneous mortality rate (Z) was estimated from the slope of the catch curve over age classes (4-5 classes used). Assumptions include: constant rate of mortality, no recruitment variation and no gear selection. Abundances of fish were found to decline with latitude. There are three location-specific length distribution graphs available.

Salvanes and Sockley, $1996 \rightarrow$ Maurolicus muelleri is described as a rapidly maturating species which lives a short life of up to about 3 years. The Age-1+ group locates in the upper part of the SSL while age-2+ locates in the lower part of the layer. There is a length-frequency distribution graph available for each of the four areas.

Goodson et al., $1995 \rightarrow$ There are length-frequency distributions graphically available in the paper, distinguished for January, March, May and June. The graphs show the gradual overlapping of year-classes in the water column distribution (neatly separated upper and lower layers), with juvenile age-0 merging the adult population in the SSL when approaching summer. Growth rate was higher in January than in June, thus the size differences between juvenile and adults decreased towards summer. The vertical distribution is characterized by ascent at dusk and descent at dawn. Seasonality (strong at such high latitude) strongly influences the species' behaviour. The pattern of vertical migration also shifts seasonally, depending on whether survivorship, in winter, or reproduction, in summer, is the predominant motivation.

Rasmussen and Giske, $1994 \rightarrow$ The annual mortality rate between age-1 and age-2+ was calculated from the length-frequency distribution assuming equal year-class strength. It should therefore be considered with caution. The age classes identified go from 0 to $3+$, and with some individuals potentially of age-4. A plot of length-frequency distribution is available in the paper. In May, the vertical distribution profile consists of: max depth of SSL between 11:00 and 15:00 in the afternoon (lowest depth at 14:15 pm); min depth of SSL between 23:30 and 3:30 at night. Stomach content analysis available. During the summer, the fish locate between 120 and 170 metres during the day, while between 0 and 30 metres at night. In winter, juvenile stays between 70 and 100 metres during the day but the adults locate 50 metres deeper in the lower layer.

Gjösæter, $1981 \rightarrow$ The mortality is calculated from length-distribution over age classes (I-IV) through geometric mean regression, but they underline a gear selection bias. High mortality between 2-3 years old individuals is highlighted in the summer. Growth was found higher in the fjords compared to the open ocean, and the Linf value seemed lower in the fjords. Production per year is estimated to be $0.23 \mathrm{~g} /$ fish. The method used assumes that the mortality is constant. In reality, the natural mortality seems to be low during the first part of life when production is high, and higher during older ages, when growth, and therefore production, is very slow. These effects will tend to make $\mathrm{P}=0.23 \mathrm{~g}$ an underestimate. Further stomach analyses are available in the paper. The maximum sustainable yield was calculated to occur at a fishing mortality of between 5 and 6 , with an age of 0.6 years at first capture. Age at recruitment is considered to be 0.25 and max age is 3.5 years.

Giske and Aksnes, $1992 \rightarrow$ This paper is not included in the table above but contains information on feeding rate, growth rate, and parameters, but not in terms that correspond to those of the table.

Young et al., $1987 \rightarrow$ The temperature profile at 200 m is available in graphic form. Two tables with sex-grouped frequencies for each SL class are available in the paper. The sex ratio was consistent among size classes with females always outnumbering males. The spawning season is prolonged from August to October. Different eggs development coexisted in time underlying a batch spawning behavior.

Dalpadado and Gjøsaeter, $1987 \rightarrow$ This paper includes scarce information on the zooplankton community and diet. The fish locate between 350 and 450 during the day but some schools of Maurolicus were observed between 50 and 200 during the day. A table with sex-grouped frequencies for each SL class is available in the paper.

Clarke, $1982 \rightarrow$ A graphical representation of the size-classes harvested along the depth profile is available. Length-frequencies (not good for extraction but only for visualization) among the sampling months is available.

Prosch, $1991 \rightarrow$ Spawning in the Benguela area peaks in spring/early summer. Yearly temperature profile at 40 metres available, with further references in the text to other studies which determine hatching temperatures and spawning preferences.

Melo and Armstrong, $1991 \rightarrow$ This paper is not included in the above table, but it contains some information about fecundity of Maurolicus muelleri in the Benguela ecosystem in 1989. Fecundity was calculated over standard length and resulted in the equation $y=3.52 x+41.14$. Mean relative fecundity was found to be 203 eggs/g (ovary-free fish) or $182 \mathrm{eggs} / \mathrm{g}$ (whole fish).

Almeida and Rossi-Wongtschowski, $2007 \rightarrow$ A table of size-classes frequency distribution is available. No significant sex ratio different from 1:1 was found overall. Description of the use of $L 50 / L_{\text {inf }}$ ratio information and its approximation to $L_{\min }(o b s$. at maturity $) / L_{\max }($ observed $)$.

Staby et al., $2013 \rightarrow$ Three SSLs are identifiable by the echogram. SSL1 is situated at 50-60 metres and is composed of post-larvae, SSL2 is situated at 66-80 metres and is composed of juveniles, and SSL3 is at 110-165 metres and composed of adults. SSL1 and SSL2 displayed ascent towards the surface, reaching it at sunset, and descent towards their usual depth, reaching it before sunrise. The SSL3 layer mainly remained at constant depth. The mortality over feeding rate ratio is smaller for post-larvae than for juveniles and adults. This is because at higher light intensity the larvae feed at higher rate, and consequently grow at higher rates, and experience a smaller mortality rate for their reduced dimensions (less susceptible to visual predation). Instead in deeper layers and larger individuals still have a high feeding rate but also the predation rate by visualization increases.

Staby et al., $2011 \rightarrow$ Length-frequency distributions are available in the paper, separated by day and night, for SSL and for two years. Temperature and salinity profiles are also available. Catches in kg are available for each trawl sample. The observed vertical distributions consisted of 3 layers in 2007: two at 50-75m and one at 115-175m during daytime. In 2008 the layers were 3 neatly separated in $70-90 \mathrm{~m}, 110-125 \mathrm{~m}$ and 155-215 m. Above 200 m the catches were dominated in biomass by Maurolicus. Monthly-based 24h-echograms are available.

1.4 References for Pearlside

Almeida, E.M., Rossi-Wongtschowski, C.L.D.B. (2007). Maurolicus stehmanni Parin \& Kobyliansky, 1993 (Sternoptychidae): length of first maturation, and spawning seasons in the south-southeast Brazilian region. Brazilian Journal of Oceanography, 55, pp.309-322.

Bellucco, A., Hara A., Almeida, E.M., Rossi-Wongtschowski, C.L.D.B. (2004). Growth parameters estimates of Maurolicus stehmanni Parin \& Kobyliansky 1996 (Teleostei, Sternoptichydae) from south and southeastern Brazilian waters. Brazilian Journal of Oceanography, 52, pp.195-205.

Clarke, T.A. (1982). Distribution, growth and reproduction of the lightfish Maurolicus muelleri (Sternoptychidae) off South-East Australia. CSIRO Marine Laboratories Report N.145.

Dalpadado, P. and Gjosæter, J. (1987). Observations on mesopelagic fish from the Red Sea. Marine Biology, 96, pp.173-183.

Giske, J. and Aksnes, D.L. (1992). Ontogeny, season and trade-offs: vertical distribution of the mesopelagic fish Maurolicus muelleri. Sarsia, 77, pp.253-261.

Gjösæter, J. (1981). Life history and ecology of Maurolicus muelleri (Gonostomatidae) in Norwegian waters. Fisk. Dir. Skr. Ser. HavUnders., 17, pp.109-13 1.

Goodson, M.S., Giske. J., Rosland, R. (1995). Growth and ovarian development of Maurolicus muelleri during spring. Marine Biology, 124, pp.185-195.

Ikeda, T. (1996). Metabolism, body composition, and energy budget of the mesopelagic fish Maurolicus muelleri in the Sea of Japan. Fishery Bulletin, 94, pp.49-58.

Kristoffersen, J.B. (2007). Growth rate and relative otolith size in populations of adult Müller's pearlside Maurolicus muelleri. Journal of Fish Biology, 71, pp.1317-1330.

Kristoffersen, J.B. and Salvanes, A.G.V. (1998). Life history of Maurolicus muelleri in fjordic and oceanic environments. Journal of Fish Biology, 53, pp.1324-1341.

Melo, Y.C. and Armstrong, M.J. (1991). Batch spawning behaviour in lightfish Maurolicus muelleri. South African Journal of Marine Science, 10, pp.125-130.

Prellezo, R. (2019). Exploring the economic viability of a mesopelagic fishery in the Bay of Biscay. ICES Journal of Marine Science, 76, pp.771-779.

Prosch, R.M. (1991). Reproductive biology and spawning of the myctophid Lampanyctodes hectoris and the sternoptychid Maurolicus muelleri in the southern Benguela Ecosystem. South African Journal of Marine Science, 10, pp.241-252.

Rasmussen, O.I. and Giske, J. (1994). Life.history parameters and vertical distribution of Maurolicus muelleri in Masfjorden in summer. Marine Biology, 120, pp.649-664.

Salvanes, A.G.V. and Stockley, B.M. (1996). Spatial variation of growth and gonadal developments of Maurolicus muelleri in the Norwegian Sea and in a Norwegian fjord. Marine Biology, 126, pp.321-332.

Staby, A., Røstad, A., Kaartvedt, S. (2011). Long-term acoustical observations of the mesopelagic fish Maurolicus muelleri reveal novel and varied vertical migration patterns. Marine Ecology Progress Series, 411, pp. 241-255.

Staby, A., Srisomwong, J., Rosland, R. (2013). Variation in DVM behaviour of juvenile and adult pearlside (Maurolicus muelleri) linked to feeding strategies and related predation risk. Fisheries Oceanography, 22, pp. 90-101.

Sobradillo, B., Boyra, G., Martinez, U., Carrera, P., Peña, M., Irigoien, X. (2019). Target Strength and swimbladder morphology of Mueller's pearlside (Maurolicus muelleri). Sci Rep 9, 17311.

2.0 Literature Review on Key Demographic Parameters for Glacier Lantern Fish (Benthosema glaciale)

2.1 Introduction

The glacier lantern fish or Benthosema glaciale is a small planktivorous, non-migratory mesopelagic fish inhabiting Atlantic oceanic waters, mainly concentrating in the northern Atlantic Ocean (FishBase, 2020). The species has a wide temperature tolerance and is mainly present in waters with temperatures between $4-16^{\circ} \mathrm{C}$. The geographical distribution limits in the southern Atlantic and in the Eastern Mediterranean correspond closely to the $15^{\circ} \mathrm{C}$ isotherm of average annual temperature at 200 m (Gjösæter, 1973; Schroeder, 1963). The glacier lantern fish is a short-living species with a maximum life span of about 8 years (Muus \& Nielsen 1999), a small body size with a maximum length of 10.3 cm (Hulley, 1990), a high growth rate and a small size at maturation (García-Seoane et al., 2014). During the winter season however, growth in body length slows or nearly ceases (Kawaguchi \& Mauchline, 1982). Maturation is reached at the age of 2 or occasionally 3 years (Gjøsæter, 1981).

Benthosema glaciale feeds mainly on Copepods (Kawaguchi \& Mauchline, 1982). Distinct vertical migrations occur with high abundances at lower depths (150-530 m) during the day and closer to the surface during the night ($45-90 \mathrm{~m}$) to feed on zooplankton (Halliday, 1970). The glacier lantern fish is mainly predated on by gadoid fish, such as saithe and blue whiting (Dypvik \& Kaartvedt, 2012). The diel vertical migration is a trade-off between feeding opportunities and predation risk, with light being the trigger mechanism (Dypvik \& Kaartvedt, 2012; Pearre, 2003). Together with the northern pearlside Maurolicus muelleri, the species is the most abundant mesopelagic fish in Norwegian and North Atlantic waters and together they are therefore the most attractive targets for mesopelagic fishery activities (Rasmussen \& Giske, 1994).

2.2 Review Results and Overview

Table 2.1. Parameters of life-history traits and biology of glacier lantern fish or Benthosema glaciale at different locations in different periods from the published literature. The outcome of the literature review shows that research has been mainly focused on North-East Atlantic and North-West Atlantic waters.

Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{gathered} \hline \text { Von Bert. } \\ L_{\text {inf }} \\ (\mathrm{mm}) \end{gathered}$	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/ Fecundity (mm)	Sex ratio	Natural mortality M $\left(\mathrm{y}^{-1}\right)$	LW- relationship	Growth parameter k	Other
Halliday 1970	6-ft Isaacs-Kidd midwater trawl without closing devices	Central Nova Scotia, Between May 1967 and January 1969	Day (less than 8.5 C and most between 5-6 C) depths below 250 fath and night (most between 49.5 C) Depths from 25-50 fath	4350	Range: 10-70	68.28			$\begin{gathered} 37 \\ \text { Age: } 2-3 \end{gathered}$				0.36	$\mathrm{t}_{0}: 0.49$
Gjosxeter 1973	Isaacs-Kidd three-foot midwater trawl And a Beyer low speed midwater trawl	```fjord system in the Bergen area of the west coast of Norway 1969```	$\begin{aligned} & 100-400 \mathrm{~m} \\ & 7.0-8.2^{\circ} \mathrm{C} \end{aligned}$	644	Range: 37-71	75				54.8	58\%		0.45	$\mathrm{t}_{0}: 0.25$
Gjosxeter 1981	$\begin{aligned} & \text { Pelagic fish } \\ & \text { trawl \& Isaacs- } \\ & \text { Kidd midwater } \\ & \text { trawl } \end{aligned}$	Norway 1973-75		1111	$\begin{gathered} 57.7 \\ \text { Range: } 48-75 \end{gathered}$	$70-87$ All samples: 83.063		8.68		54.8\%	0.7	Off the coast: $W=\left.7.6^{*} 10^{-7}\right\|^{3.66}$ Spring-summer: $W=\left.8.4^{*} 10^{-6}\right\|^{3.10}$ Autumn: $W=\left.2.8^{*} 10^{-6}\right\|^{3.41}$ the total fjord material: $W=\left.4.8^{*} 10^{-6}\right\|^{3.26}$ (weight in gram and length in mm)	$\begin{gathered} \hline 0.19-0.46 \\ \text { All samples: } 0.204 \end{gathered}$	Batch fecundity: 781 ($\mathrm{n}: 28$) Spawns mainly during summer All samples: $t_{0}:-0.64$

Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{gathered} \text { Von Bert. } \\ L_{\text {inf }} \\ (\mathrm{mm}) \end{gathered}$	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	$\begin{gathered} \text { L50/ } \\ \text { Maturity/F } \\ \text { ecundity } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { Sex } \\ \text { ratio } \end{gathered}$	$\begin{aligned} & \text { Natural } \\ & \text { mortality } \\ & M \\ & \left(\mathrm{y}^{-1}\right) \end{aligned}$	LW-relationship	$\begin{gathered} \text { Growth } \\ \text { parameter k } \end{gathered}$	Other
$\begin{aligned} & \text { Kawaguchi and } \\ & \text { Mauchlinea } \\ & \text { (1982) } \end{aligned}$	Pelagic trawling	southern part of the Rockall Trough off northwestern Ireland	Depths from 630-2,700 m		$\begin{gathered} 40 \pm 7.1 \\ \text { Range: } 32-55 \end{gathered}$				$\begin{gathered} 30-39 \mathrm{~mm} \\ 2 \text { years } \end{gathered}$	53\%				
Mazhirina, 1988		Hatton Plateau							33-35					
Kristoffersen \& Salvanes (2009)	$\begin{gathered} \text { pelagic } \\ \text { Harstadtrawl } \\ \text { and } \\ \text { Aakratrawl } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Norway 1993- } \\ & 1997 \end{aligned}$	>300m											
Kristoffersen \& Salvanes (2009)		Herdefjorden		214		70.4					1.03		0.45	$\mathrm{t}_{0}: 0.03$
Kristoffersen \& Salvanes (2009)		Masfjorden		169		69.7					0.99		0.60	to 0.0 .22
Kristoffersen \& Salvanes (2009)		Sognefjorden		151		64.8					1.50		0.38	$\mathrm{to}_{0}:-1.13$
Kristoffersen \& Salvanes (2009)		Norwegian Sea		173		106.2					1.04		0.18	$\mathrm{t}_{0}:-0.26$
$\begin{gathered} \text { Garciá-Seoane et } \\ \text { al., } 2014 \end{gathered}$	pelagic and bottom trawl gear	Flemish Cap from a) 18 June to 22 July 2008 and b) from 21 June to 22 July 2010	a) $0-300 \mathrm{~m}$ b) $300-650 \mathrm{~m}$	Total 1213: 551 males, 549 females and 113 individuals of indetermina te sex a) $132: 66$ males, 46 females b) 1081:485 males, 503 females	$\begin{gathered} \hline \text { Total: } 52 \pm 10, \\ 54 \pm 10(\mathrm{M}), \\ 53 \pm 9(\mathrm{~F}) \\ \text { a) } 54 \pm 10: \\ 57 \pm 7(\mathrm{M}), \\ 56 \pm 8(\mathrm{~F}) \\ \text { b) } 52 \pm 10: \\ 53 \pm 10(\mathrm{M}), \\ 53 \pm 10(\mathrm{~F}) \end{gathered}$ Range: a) Min: 28 Max: 71 Males \& females: 40-71 b) Min: 28 Max:81 Males: 32-73 Females: 31-81	$\begin{gathered} \hline \text { Total: } \\ 69.546, \\ 69.896(\mathrm{M}), \\ 69.8665(\mathrm{~F}) \\ \\ \text { a) } 70.073: \\ 70.870(\mathrm{M}), \\ 69.463(\mathrm{~F}) \\ \text { b) } 69.809 \\ 70.480(\mathrm{M}), \\ 70.165(\mathrm{~F}) \end{gathered}$	-	-	47.6	$\begin{gathered} \text { a) } \\ 1: 2.66 \\ \text { b) } 1: 1 \end{gathered}$	Overall population: age1: 1.09 age2: 0.79 age3: 0.60 age4: 0.49 age5: 0.44 age6: 0.39	-	$\begin{gathered} \hline \text { Total: } 0.471, \\ 0.468(\mathrm{M}), \\ 0.463(\mathrm{~F}) \\ \\ \text { a) } 0.428: \\ 0.414(\mathrm{M}), \\ 0.443(\mathrm{~F}), \\ \text { b) } 0.471: \\ 0.463(\mathrm{M}), \\ 0.461 \end{gathered}$	to 0 : 0.403
$\begin{gathered} \text { Garciá-Seoane et } \\ \text { al., } 2015 \end{gathered}$	(1) a) two types of gear for pelagic and bottom fishing in 2009. Pelagic fishing: Isaacs Kidd Midwater Trawl of 4 m 2 . Bottom fishing: Lofoten type trawl b) bottom trawl in 2011.	(1) the Flemish Cap (Northwest Atlantic) in a) early summer JuneJuly 2009 and b) June-August 2011	(1) 0-600 m	$\begin{aligned} & \text { (1) a) } 142 \\ & \text { b) } 43 \end{aligned}$	33.9 ± 3.6 Range: 27-43				(1) a) 47.6 b) 49.1					

Source	Survey and gear	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	Von Bert. Linf (mm)	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/F ecundity (mm)	$\begin{gathered} \hline \text { Sex } \\ \text { ratio } \end{gathered}$	Natural mortality M $\left(y^{-1}\right)$	LW-relationship	$\begin{gathered} \text { Growth } \\ \text { parameter k } \end{gathered}$	Other
$\begin{gathered} \text { Garciá-Seoane et } \\ \text { al., } 2015 \end{gathered}$	(2) two types of gear for pelagic and bottom fishing Pelagic: double-warpmodified commercial mid-water trawl bottom fishing: Isaacs-Kidd Midwater Trawl of 3 m 2	(2) off the Balearic slands (western Mediterranean) in a) late autumn (December) 2009 and b) early summer (July) 2010	(2) 200 m and 600900m	(2) a) 72	Range: 27-43				(2) a) 24.5					Batch fecundity: 491 ± 228 (n: 33) ($\mathrm{n}: 33$)
$\begin{gathered} \text { Haliday et al., } \\ 2015 \end{gathered}$	International Young Gadoid Pelagic Trawl (IYGPT)	Central Nova Scotia, 1984-89			NightRange: $13-71$Median: 25DayRange: Median: 18-79				32-33 in WSW (Warm Slope Water) 39-40 in LSW (Labrador Slope Water)					
Tåning 1918		$\begin{gathered} \hline \text { Mediterranean } \\ \text { Sea } \end{gathered}$			$\begin{gathered} 36 \pm 3.1 \\ \text { Range: } 32-40 \end{gathered}$				30					$\begin{gathered} \text { Batch } \\ \text { fecundity: } \\ 323 \pm 94 \end{gathered}$

2.3 References for glacier lantern fish

Dypvik, E., \& Kaartvedt, S. (2012). Long-term acoustic observations unveil behavioral patterns of potential mesopelagic predators of glacier lanternfish (Benthosema glaciale). Behavioral Strategies of Lanternfishes (Family Myctophidae) in a High-Latitude Fjord and the Tropical Red Sea.

García-Seoane, E., Bernal, A., and Saborido-Rey, F. (2014). Reproductive ecology of the glacier lanternfish Benthosema glaciale. Hydrobiologia 727, 137-149.

Gjösæter, J. (1973). Age, growth, and mortality of the mygtophid fish, Benthosema glaciale (Reinhardt), from Western Norway. Sarsia, 52(1), 1-14.

Gjøsæter, J. (1981). Growth, production and reproduction of the myctophid fish Benthosema glaciale from western Norway and adjacent seas. Fiskeridirektorates Skrifter Serie Havundersøkelser 17: 79-108

Halliday, R. G. (1970). Growth and vertical distribution of the glacier lanternfish, Benthosema glaciale, in the northwestern Atlantic. Journal of the Fisheries Research Board of Canada 27: 105-116.

Halliday, R. G., Clark, K. J., \& Themelis, D. E. (2015). The biology of Benthosema glaciale and Ceratoscopelus maderensis (Myctophidae) in the Slope Sea off Nova Scotia, Canada. J. Northw. Atl. Fish. Sci, 47, 75-89.

Hulley, P.A. (1990). Myctophidae. p. 398-467. In J.C. Quero, J.C. Hureau, C. Karrer, A. Post and L. Saldanha (eds.) Check-list of the fishes of the eastern tropical Atlantic (CLOFETA). JNICT, Lisbon; SEI; Paris; and UNESCO, Paris. Vol. 1.

Kawaguchi, K. \& J. Mauchline (1982). Biology of myctophid ishes (Family Myctophidae) in the Rockall Trough, northeastern Atlantic Ocean. Biological Oceanography 1: 337-373.

Mazhirina, G. P. (1988). Some information on the development of ovaries in Benthosema glaciale from different areas of the North Atlantic. NAFO Scientific Council Research Document 88(21): 1-11.

Muus, B.J. and J.G. Nielsen (1999). Sea fish. Scandinavian Fishing Year Book, Hedehusene, Denmark. 340 p.

Pearre S (2003) Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biol Rev 78:1-79

Rasmussen, O. I., \& Giske, J. (1994). Life-history parameters and vertical distribution of Maurolicus muelleri in Masfjorden in summer. Marine Biology, 120(4), 649-664.

Schroeder E, H. (1963). North Atlantic temperatures at a depth of 200 metres. Serial Atlas Mar. Environment Folio, 2, 1-11.

Tåning, A. V. (1918). Mediterranean Scopelidae (Saurus, Aulopus, Chlorophthalmus, and Myctophum). Report on the Danish Oceanographical Expeditions 1908-1910 to the Mediterranean and Adjacent Seas 2: 8-45.

3.0 Key Demographic (Biological) Parameters for Pearlside (Maurolicus muelleri) and Glacier Lantern Fish (Benthosema glaciale) Collated and Estimated from MEESO Survey Sampling (Work Packages 4 \& 2 \& 5)

3.1 Introduction

This section contains the initial parameters obtained so far from outputs on the field campaign data sampling with provision and estimation of initial biological parameters under the survey sampling associated to the MEESO project (MEESO WP4 \& WP2 \& WP5). It should be emphasized that these parameters are initial and only very preliminary, and that analyses are still ongoing on the input data from the MEESO research survey sampling. Accordingly, the parameters should be used with great caution.

3．2 Initial Results and Overview from Research Survey Sampling

Table 3．1．Parameters of life－history traits and biology of pearlside（Maurolicus muelleri）and glacier lantern fish（Benthosema glaciale）obtained at different locations and in different periods from the MEESO research survey sampling．

Source \＆Species	Survey and gear incl． selection parameters	Space and time	Sampling strategy／ Depth／ Temp	Sample size（ \mathbf{N} ）	Observed Standard Length （mm）	Von Bert．Linf （mm）	Weight （g）	Von Bert． $\mathbf{W}_{\text {inf }}$ （g）	L50／ Maturity／Fecundity （1）	Sex ratio F：M	Natural mortality M $\left(y^{-1}\right)$	LW－ relationship TW vs SL	$\begin{gathered} \text { Growth } \\ \text { parameter } \\ \text { k } \end{gathered}$	$\begin{gathered} \text { Other } \\ \text { IGS }(\pm \text { SD })^{12} \\ 1 \end{gathered}$
$\begin{gathered} \text { AZTI survey } \\ 2019 \\ \text { Maurolicus } \\ \text { muelleri } \end{gathered}$	Acoustic－trawl \quad survey with pelagic trawl Hampidjan Gloria 352． Vertical opening 15 m Gradual mesh codend，with 13.5 $\mathrm{~mm}, 9 \mathrm{~mm}$ and 5 mm mesh sizes． Trawls：Apollo Poly－lce 3.0 m 2.	Bay of Biscay September	Opportunistic survey Between 15 and 400 metres Temp（3m）： $14.7-22.6^{\circ} \mathrm{C}$ Temp（50m）： $11.7-16.8^{\circ} \mathrm{C}$	$\begin{gathered} 100 \text { individual per } \\ \text { haul } \\ 400 \text { analyzed } \end{gathered}$	18－51		$\begin{gathered} 0.06- \\ 1.71 \end{gathered}$		Females L50：35．77 Males L50： 36.10 Fecundity 394 ± 156 eggs／g \qquad	The sex ratio presented significant differences with SL		$\begin{aligned} & a=7.08 * 10^{-6} \\ & b=3.10 \end{aligned}$		Age 0 to 1 IGS（\％）＝ 2．01士1．59
$\begin{aligned} & \text { AZTI survey } \\ & 2020 \\ & \text { Maurolicus } \\ & \text { mellleri } \end{aligned}$	Acoustic－trawl survey with pelagic trawl． Idem AZTI survey 2019	Bay of Biscay September	Opportunistic survey Between 15 and 400 metres Temp（3m）： $17.2-24.0^{\circ} \mathrm{C}$ Temp（ 50 m ）： $12.0-16.9^{\circ} \mathrm{C}$	$\begin{gathered} 100 \text { individual per } \\ \text { haul } \\ 500 \text { analyzed } \end{gathered}$	18－55		$\begin{gathered} 0.07- \\ 1.96 \end{gathered}$					$\begin{aligned} & a=1.08 * 10^{-5} \\ & b=3.03 \end{aligned}$		Age 0 to 1 IGS（\％）＝ 4．54土1．84
Historical JUVEN serires 2013－2020 Maurolicus muelleri	Acoustic－trawl survey with pelagic trawl． Idem AZTI survey 2019	Bay of Biscay September	Opportunistic survey Between 15 and 400 metres	$\begin{gathered} 100 \text { individual per } \\ \text { haul } \end{gathered}$	$1.5-6.5 \mathrm{~cm}$ Total length									Distribution by cm from 2013 to 2017 and by half cm onwards
Biological samples from MEGS suvey Maurolicus muelleri	$\begin{gathered} \text { pelagic trawl. } \\ \text { Idem AZTI survey } \\ 2019 \end{gathered}$	$\begin{gathered} \text { Bay of Biscay } \\ \text { April } \end{gathered}$	Opportunistic survey $\mathrm{T} 50 \mathrm{~m}=12 . \mathrm{E}^{\circ} \mathrm{C}$	62 individuals analyzed	37－53		$\begin{gathered} 0.55- \\ 1.94 \end{gathered}$					$\begin{aligned} & a=2.19 * 10^{-5} \\ & b=2.82 \end{aligned}$		Age 2 IGS（\％）＝ 5.58 ± 2.33
$\begin{array}{r} \text { Biological } \\ \text { samples from } \\ \text { BIOMAN } 2020 \\ \text { suvey } \\ \text { Maurolicus } \\ \text { muelleri } \end{array}$	pelagic trawl． Idem AZTI survey 2019	$\begin{gathered} \text { Bay of Biscay } \\ \text { May } \end{gathered}$	Opportunistic survey T50m＝12．7 ${ }^{\circ} \mathrm{C}$	$\begin{gathered} 138 \text { individuals } \\ \text { analyzed } \end{gathered}$	29－51		$\begin{aligned} & \hline 0.39- \\ & 1.79 \end{aligned}$					$\begin{aligned} & a=4.64 * 10^{-5} \\ & b=2.66 \end{aligned}$		Age 1 to 2 IGS（\％）＝ 7．48さ2．63

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \text { Von Bert. Linf } \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $W_{\text {inf }}$ (g)	$\begin{aligned} & \text { L50/ } \\ & \text { Maturity/Fecundity } \\ & \text { (1) } \end{aligned}$	Sex ratio F:M		LWrelationship TW vs SL	Growth parameter k	Other $\operatorname{IGS}(\pm S D)^{(2)}$
Biological samples from BIOMAN 2021 suvey Maurolicus muelleri	pelagic trawl. Idem AZTI survey 2019	$\begin{gathered} \text { Bay of Biscay } \\ \text { May } \end{gathered}$	Opportunistic survey 10-234 metres TSup $=15{ }^{\circ} \mathrm{C}$	100 individuals analyzed	40-58		$\begin{aligned} & 0.64- \\ & 2.42 \end{aligned}$			37% Males 63\% Females		$\begin{aligned} & a=6.52^{*} 10^{-6} \\ & b=3.16 \end{aligned}$		Age 1 to 2 IGS (\%) = 7.5士3.14
	pelagic midwater trawl 85 m length, fishing circle 420 m , wing mesh size 2.4 m graded through to codend 10 cm	Celtic sea June 1 haul $50.410^{-N}-$ $11.18=$ W	```Opportunistic survey 121 metres Temp: ~10은 (below thermocline (35-50m)```	138 individuals analyzed	40-61		$\begin{gathered} 0.72- \\ 1.77 \end{gathered}$			26% undef 34% Males 40\% Females		$\begin{aligned} & a=1.21 * 10^{-5} \\ & b=2.99 \end{aligned}$		Age 2 IGS (\%) $=$ 7.31 ± 3.47
Biological samples from WESPAS 2020 survey Maurolicus muelleri On-board measurements	pelagic midwater trawl 85 m length, fishing circle 420 m , wing mesh size 2.4 m graded through to codend 10 cm	Celtic sea June Haul 10; $50.41^{\circ} \mathrm{N}$ $11.18{ }^{\circ} \mathrm{W}$	Opportunistic survey 121 metres Temp: ~10은 (below thermocline ($35-50 \mathrm{~m}$)	100 individuals length/weight	Total length range 49- 67, mean $=$ 56.22		range 0.6-2.0 mean = 1.23							
Biological samples from WESPAS 2021 survey Maurolicus muelleri On-board measurements	pelagic midwater trawl 85 m length, fishing circle 420 m , wing mesh size 2.4 m graded through to codend 10 cm	Haul 23; 50.68 N11.31 ㅇW	Opportunistic survey	100 individuals length/weight	Total length range 52- 70, mean $=$ 61.06		range 0.8-1.7 mean $=$ 1.25							
Biological samples from WESPAS 2021 survey Maurolicus muelleri On-board measurements	pelagic midwater trawl 85 m length, fishing circle 420 m , wing mesh size 2.4 m graded through to codend 60 mm	Haul 27; $51.12{ }^{\circ} \mathrm{N}$ - 11.63 ㅇW	Opportunistic survey	13 individuals for length/weight	$\begin{gathered} \text { Total } \\ \text { length } \\ \text { range 52- } \\ 63, \text { mean }= \\ 59.61 \end{gathered}$		$\begin{gathered} \text { range } \\ 0.7-1.5 \\ \text { mean }= \\ 1.15 \end{gathered}$							
Biological samples from IBWSS 2021 Survey Maurolicus muelleri AZTI measurements	pelagic trawl 82 m length, fishing circle 768 m , wing mesh size 12.8 m graded through to codend 60 mm	$\begin{aligned} & \text { West of Ireland } \\ & \text { April } \\ & \text { Haul 13: } \\ & 59.850 \mathrm{~N}- \\ & 13.31{ }^{\circ} \mathrm{W} \end{aligned}$	Opportunistic survey 220 metres Temp (50m): ~9응	94 individuals analyzed	27-63		$\begin{aligned} & 0.14- \\ & 1.30 \end{aligned}$			95\% undef 3\% Males 2% Females		$\begin{aligned} & a=9.70^{*} 10^{-6} \\ & b=2.99 \end{aligned}$		Age 1 IGS (\%) = 6.36 ± 4.13

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	Von Bert. Linf (mm)	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	$\frac{\text { L50/ }}{\text { Maturity/Fecundity }}$ (1)	Sex ratio F:M	Natural mortality M $\left(y^{-1}\right)$	LWrelationship TW vs SL	$\begin{aligned} & \text { Growth } \\ & \text { parameter } \\ & k \end{aligned}$	$\begin{gathered} \text { Other } \\ \text { IGS }(\pm S D)^{(2)} \end{gathered}$
Biological samples from IBWSS 2021 Survey Maurolicus muelleri On-board measurements	macroplankton trawl 92 m fishing circle, non-graded 8 mm stretched mesh	Haul 10; $58.53 \cong \mathrm{~N}-9.02$ - W	Opportunistic survey	308 individuals	Total length range $21-$ 49, mean $=$ 29.03		$\begin{gathered} \text { mean }= \\ 0.14^{*} \end{gathered}$							
Biological samples from IBWSS 2021 Survey Maurolicus muelleri On-board measurements	macroplankton trawl 92 m fishing circle, non-graded 8 mm stretched mesh	Haul 12; 59.85ㅇN$13.32^{\circ} \mathrm{W}$	Opportunistic survey	389 individuals	Total length range 20- 43, mean $=$ 27.99		$\begin{gathered} \hline \text { mean }= \\ 0.13^{*} \end{gathered}$							
	pelagic trawl 82 m length, fishing circle 768 m , wing mesh size 12.8 m graded through to codend 60 mm	Haul 13; 59.85ㅇN13.31 으	Opportunistic survey	100 individuals	Total Length range 22.4- 68.9, mean $=45.15$		range 0.2-2.4, mean $=$ 0.68							
Biological samples from IBWSS 2021 Survey Maurolicus muelleri On-board measurements	pelagic trawl 82 m length, fishing circle 768 m , wing mesh size 12.8 m graded through to codend 60 mm	$\begin{gathered} \text { Haul 14; } \\ 60.22^{\circ} \mathrm{N}-7.92{ }^{\circ} \mathrm{W} \end{gathered}$	Opportunistic survey	108 individuals	Total Length range $29-$ 69 mean $=$ 42.47		$\begin{aligned} & \text { mean }= \\ & 0.57^{*} \end{aligned}$							
Biological samples from SINTEF 2019 Survey Maurolicus muelleri	pelagic trawl	Norwegian waters November	Commercial survey Between 120$175 m$	$\begin{gathered} 199 \\ \text { individuals } \\ \text { analyzed } \end{gathered}$	30-68		$\begin{aligned} & 0.13- \\ & 2.14 \end{aligned}$			$\begin{gathered} 89 \% \text { undef } \\ 4.5 \% \\ \text { Males } \\ 6.5 \% \\ \text { Females } \end{gathered}$		$\begin{aligned} & a=4.45^{*} 10^{-6} \\ & b=3.24 \end{aligned}$		Age 0 to 3 IGS (\%) = 1.09 ± 0.86
Biological samples from IMR 2020 survey Maurolicus muelleri	pelagic trawl	Norwegian waters March	Scientific survey 230 meters	76 individuals analyzed	40-75		$\begin{aligned} & 0.38- \\ & 3.22 \end{aligned}$			$\begin{gathered} \hline 70 \% \text { undef } \\ 13 \% \text { Males } \\ 17 \% \\ \text { Females } \end{gathered}$		$\begin{aligned} & a=9.25^{*} 10^{-6} \\ & b=3.12 \end{aligned}$		Age 1 to 4? (1 individual) IGS (\%) = 5.81 ± 2.87
Catch length distributions from IMR 2016115	Non-graded trawls	Norwegian Sea and Norwegian fjords	Scientific survey	24 trawls/904 individuals	11-56									

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \hline \text { Von Bert. Linf } \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/Fecundity (1)	Sex ratio F:M	Natural mortality M $\left(y^{-1}\right)$	LWrelationship TW vs SL	Growth parameter k	$\begin{gathered} \text { Other } \\ \text { IGS }(\pm S D)^{(2)} \end{gathered}$
Catch length distributions from IMR 2018106	Non-graded trawls	North Atlantic including Norwegian fjords	Scientific survey	25 trawls/1203 individuals	27-59									
Catch length distributions from IMR 2019703	Non-graded trawl, 8 mm stretched mesh size	Cape Verde to Bay of Biscay	Scientific survey	4 trawls/125 individuals	11-52									
Catch length distributions from IMR cruise 2013107	Non-graded trawl, 8 mm stretched mesh size	Norwegian Sea, Iceland Sea, Irminger Sea, Labrador Sea	Scientific survey	2 trawls/63 individuals	20-55									
Maurolicus muelleri Biological samples from MFRI survey B3-2010	Graded trawl, 9 mm stretched mesh size	SW of Iceland	Scientific survey	12 hauls/2533 individuals	19-66							$\begin{aligned} & a=7.79 * 10^{-6} \\ & b=3.13 \end{aligned}$ 340 ind with Iw-info		Age 1 to 3
Biological samples from IMR 2020 survey Benthosema glaciale	pelagic trawl	Norwegian waters March	Scientific survey 578 meters	86 individuals analyzed	19-77	vB $\mathrm{L}_{\text {inf }}=98.98$ Gompertz $L_{\text {inf }}=85.30$	$\begin{gathered} 0.05- \\ 4.95 \end{gathered}$			46\% undef 8\% Males 42\% Females		$\begin{aligned} & a=2.43 * 10^{-6} \\ & b=3.36 \end{aligned}$	$\begin{gathered} \text { VB } \\ \mathrm{k}=0.1646 \\ \\ \text { Gompertz } \\ \mathrm{K}=0.305 \end{gathered}$	Age 2 to 6 IGS (\%) = 3.94 ± 1.75
Biological samples from IBWSS 2021 Survey Benthosema glaciale	pelagic trawl 82 m length, fishing circle 768 m , wing mesh size 12.8 m graded through to codend 60 mm	$\begin{aligned} & \text { West of Ireland } \\ & \text { April } \\ & 1 \text { haul: } 60.13 \bigcirc \mathrm{~N}- \\ & 7.55 \circ \mathrm{~W} \end{aligned}$	Opportunistic survey 460 meters Temp 50m: $\sim{ }^{\sim}{ }^{\circ} \mathrm{C}$	43 individuals analyzed	43-78	VB $\mathrm{L}_{\text {inf }}=87.36$ Gompertz $\mathrm{L}_{\text {inf }}=84.26$	$0.61-$ 5.47 Weight couldn't be very accurate due to poor fish condition			$\begin{gathered} \text { Poor } \\ \text { condition } \end{gathered}$		$\begin{aligned} & a=2.24 * 10^{-7} \\ & b=3.89 \end{aligned}$ to be considered with caution	$\begin{gathered} \text { VB } \\ \mathrm{k}=0.276 \\ \\ \text { Gompertz } \\ \mathrm{K}=0.372 \end{gathered}$	Age 3 to 7 IGS (\%) = No information
Catch length distributions from IMR cruise 2016115	Non-graded trawls	Norwegian Sea and Norwegian fjords	Scientific survey	26 trawls/1801 individuals	13-81									
$\begin{array}{r} \hline \text { Catch length } \\ \text { distributions } \\ \text { from IMR } \\ \text { cruise } \\ 2018106 \\ \hline \end{array}$	Non-graded trawls	North Atlantic including Norwegian fjords	Scientific survey	20 trawls/1337	21-85									
$\begin{array}{r} \text { Catch length } \\ \text { distributions } \\ \text { from IMR } \\ \text { cruise } \\ 2019703 \\ \hline \end{array}$	Non-graded trawl, 8 mm stretched mesh size	Cape Verde to Bay of Biscay	Scientific survey	14 trawls/469 individuals	11-44									

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \text { Von Bert. Linf } \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/Fecundity (1)	Sex ratio F:M	Natural mortality M $\left(y^{-1}\right)$	LWrelationship TW vs SL	$\begin{gathered} \text { Growth } \\ \text { parameter } \\ k \end{gathered}$	Other $\operatorname{IGS}(\pm S D)^{(2)}$
Catch length distributions from IMR cruise 2013107	Non-graded trawl, 8 mm stretched mesh size	Norwegian Sea, Iceland Sea, Irminger Sea, Labrador Sea	Scientific survey	29 trawls/2152 individuals	16-84									
Benthosema glaciale Length distributions from MFRI survey A 2019	\#1024". Equipped with multisampler with three codends. Stretched mesh size of coded 23 mm . Vertical opening $45-50 \mathrm{~m}$	Irminger Sea June -July	Scientific redfish survey Depths from $\sim 250-850 \mathrm{~m}$	29 hauls/ 2296 individuals	24-94							$\begin{aligned} & \begin{array}{l} a=1.39 * 10^{-5} \\ b=2.97 \\ 2238 \text { ind with } \\ \text { Iw-info } \end{array} \\ & \text {. } \end{aligned}$		
Benthosema glaciale Length distributions from MFRI survey A 2011	\#1024". Equipped with multisampler with three codends. Stretched mesh size of coded 23 mm. Vertical opening $45-50 \mathrm{~m}$.	Irminger Sea June -July	\quadScientific redfish survey Depths from $\sim 250-850 \mathrm{~m}$	37 hauls/ 1197 individuals	5-90							$\begin{aligned} & \mathrm{a}=1.81 * 10^{-5} \\ & \mathrm{~b}=2.89 \\ & 1166 \text { ind with } \\ & \text { Iw-info } \end{aligned}$		
Benthosema glaciale Length distributions from MFRI survey A 2013	\#1024". Equipped with multisampler with three codends. Stretched mesh size of coded 23 mm. Vertical opening $45-50 \mathrm{~m}$	Irminger Sea June-July	\quadScientific redfish survey Depths from $\sim 250-850 \mathrm{~m}$	37 hauls/ 1693 individuals	3-80							$\begin{aligned} & a=1.76 * 10^{-5} \\ & b=2.92 \\ & 1723 \text { ind with } \\ & \text { Iw-info } \end{aligned}$		
$\begin{array}{r} \text { Benthosema } \\ \text { glaciale } \\ \text { Length } \\ \text { distributions } \\ \text { from MFRI } \\ \text { survey A62015 } \end{array}$	\#1024". Equipped with multisampler with three codends. Stretched mesh size of coded 23 mm . Vertical opening $45-50 \mathrm{~m}$	Irminger Sea June-July	\quad Scientifc redfish survey Depths from $\sim 250-850 \mathrm{~m}$	37 hauls/ 1693 individuals	10-90							$\begin{aligned} & a=1.30^{*} 10^{-5} \\ & b=2.96 \\ & 874 \text { ind with } \\ & \text { Iw-info } \end{aligned}$		
Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \text { Von Bert. Linf } \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/Fecundity (1)	Sex ratio F:M	Natural mortality M $\left(y^{-1}\right)$	LWrelationship TW vs SL	$\begin{gathered} \text { Growth } \\ \text { parameter } \\ k \end{gathered}$	Other $\operatorname{IGS}(\pm S D)^{(2)}$
Benthosema glaciale Biological samples from MFRI survey A72020	Macrozooplankton trawl, 4 mm mesh (6 mm mesh) trawl opening $\sim 27 \mathrm{~m}^{2}$	Irminger Sea, Reykjanes Ridge, off S-Iceland, July	Opportunistic Scientific survey 4 clusters $3 x$ each: 1. Integrated from 1000m, TS lower 400570,TS upper : 250-325	12 hauls/582 individuals	Range 865 , mean $=$ 34		$\begin{gathered} \text { Range } \\ \text { 0.1-3.6 } \\ \text { mean } \\ =0.6 \mathrm{~h} \end{gathered}$					$\begin{aligned} & a=3.32 * 10^{-6} \\ & b=3.35 \\ & 324 \text { ind with } \\ & \text { Iw-info } \end{aligned}$		

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \text { Von Bert. Linf } \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/Fecundity (1)	Sex ratio F:M		LWrelationship TW vs SL	Growth parameter k	$\begin{gathered} \text { Other } \\ \text { IGS }(\pm S D)^{(2)} \end{gathered}$
Benthosema glaciale Biological samples from MFRI survey A72020	Multpelt 832 with 40 mm mesh, trawl opening	$\begin{aligned} & \text { Irminger Sea, } \\ & \text { Reykjanes Ridge, } \\ & \text { off S-Iceland, } \\ & \text { July } \end{aligned}$		6 stations/227 individuals	38-85							$\begin{aligned} & a=8.3^{*} 10^{-6} \\ & b=3.06 \\ & 223 \text { ind with } \\ & \text { Iw-info } \end{aligned}$		

* weight average determined from measurement in bulk divided by total number of fish
(1) Parameters were calculated by pooling samples of Maurolicus captured in the Bay of Biscay in April19, May21 and September 16 and 20.
(2)

IGS $=100 * \frac{\text { Gonadweight }}{\text { EvisceratedWeight }}$

3.3 Additional Relevant Information Available on Key Demographic Parameters for Pearlside (Maurolicus muelleri) from Survey Sampling

Biology and key demographic parameters of Maurolicus muelleri in the Bay of Biscay. Preliminary results.

By Paula Alvarez, Dorleta Garcia and Guillermo Boyra.

Abstract

Based on the catches of M. muelleri made with a pelagic trawl net during the surveys JUVENA (in September 2019/2020), MEGS (in April 2019) and BIOMAN (in May 2020) in the Bay of Biscay, we studied the most relevant biological parameters to assess the feasibility of developing an ecologically sustainable mesopelagic fish fishery. The study presents preliminary data on length distribution, the age, growth, maturity ogive, spawning season, and sex ratio for this species. The results revealed that in spring, the adult spawners (age 1 and 2) are the dominant ones, while in September, they are the juveniles (age 0) born in spring. No fish older than 2 years were found in this area. Growth in weight with length, described by the power equation, varied annually ($\beta=3.01$ and $\beta=3.13$ for 2019 and 2020, respectively) but no statistically differences were found between sexes. Using standard lengths, 50% of fish were mature at 34.1 mm (both sexes combined) and the sex ratio, male to female, was 0.44:0.56. The proportion of females increased with length, and a $1: 1$ sex ratio was predicted at a standard length of 41.5 mm . Most of ripe female fish were found April and May and a few in September. The spawning season occurs, at least, between March and July with a likely peak in May. Batch fecundity ranged from 114 to 919 oocytes/females, and it increased with the weight and the length of females. These results can be considered a significant advance in the knowledge of the biology of M. muelleri in this area, despite the fact that some variables, such as age assignation, require more in-depth analysis.

For more information see: Alvarez, A, Garcia, D. and Boyra, G., 2021. Biology and key demographic parameters of Maurolicus muelleri in the Bay of Biscay. Preliminary results. Manuscript In Preparation, AZTI, Spain.

4.0 Key Demographic (Biological) Parameters for Pearlside (Maurolicus muelleri) Estimated from Survey Data in TropFishR (MEESO Work Package 5)

4.1 Introduction

This section covers key demographic parameters for Pearlside (Maurolicus muelleri) estimated from survey data in TropFishR (MEESO Work Package 5). The table below presents the results from highly preliminary initial runs with the TropFishR package (Mildenberger et al. 2017). ELEFAN+ bootstrapping methods were applied to subsets of length frequency data from Maurolicus muelleri, from different regions and years. Growth parameters from the Von Bertalanffy equation, and their confidence intervals, were estimated, and for selected subsets also natural Mortality M and selectivity parameter L 50 . The results in the table below are presented with the main purpose of model calibration and parameter setting, and hence should be treated with extreme caution.

4.2 Initial Results and Overview from TrophFishR Analyses

Table 4.1. TrophFishR initial parameter estimates from survey data of life-history traits and biology of pearlside (Maurolicus muelleri) at different locations in different periods of MEESO research survey sampling.

$\begin{aligned} & \text { Source } \\ & \text { \& Species } \end{aligned}$	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temperat ure	Sample size (N)	Observed Standard Length (mm)	$\begin{aligned} & \text { Von Bert. } \\ & L_{\text {inf }} \\ & (\mathrm{mm}) \end{aligned}$	Weight (g)	Von Bert. $W_{\text {inf }}$ (g)	L50/ Maturity/ Fecundity	Sex ratio	$\begin{gathered} \text { Natural } \\ \text { mortality } \\ M \\ \left(y^{-1}\right) \end{gathered}$	LWrelationship	Growth parameter k	Other
$\begin{gathered} \text { Maurolicus } \\ \text { muelleri, IMR } \\ \text { surveys 2016-2018 } \end{gathered}$	Macrozooplank ton-net, $6 x 6 \mathrm{~mm}$ mesh size. Estimated selectivity parameter L50: $2.46+-0.21$	2016-2018, March, June and October		$\begin{gathered} \hline 28 \text { hauls, } \\ 1359 \\ \text { individuals } \\ \text { measured } \end{gathered}$		5.72 +-0.51					1.95 +-0.72		0.81-0. 0.39	$\begin{gathered} \hline \mathrm{TO}: 0.45+- \\ 0.18 \end{gathered}$
$\begin{gathered} \text { Maurolicus } \\ \text { muelleri, IMR } \end{gathered}$ surveys in fjords	Macrozooplank ton-net, $6 \times 6 \mathrm{~mm}$ mesh size. Estimated selectivity parameter L50: $3.28+0.1$	$\begin{aligned} & 2018 \text { (June), } \\ & 2020 \text { (March) } \end{aligned}$		7 hauls, 757 individuals sampled		5.05 +-0.64					$2.1+-0.69$		0.84 +-0.35	$\begin{gathered} \text { TO: } 0.51+- \\ 0.18 \end{gathered}$
Maurolicus muelleri, IMR surveys in the North Sea	Macrozooplank ton-net, $6 x 6 \mathrm{~mm}$ mesh size. Estimated selectivity parameter L50: 1.98+- 0.03	2020 (March)		7 hauls		$5.82+0.31$					1.84 +-0.64		0.75 +-0.35	$\begin{gathered} \text { T0: } 0.47+- \\ 0.17 \end{gathered}$
Maurolicus muelleri, IMR surveys on the coast of Norway	Macrozooplank ton-net, $6 \times 6 \mathrm{~mm}$ mesh size. Estimated selectivity parameter L50: $2.37+0.22$	2016 (October)				$5.78+0.77$					$1.79+0.86$		0.75 +-0.47	$\begin{gathered} \text { To: } 0.46+- \\ 0.18 \end{gathered}$
Maurolicus muellei IMR surveys between Iceland and the Faroe Islands	Macrozooplank ton-net, $6 \times 6 \mathrm{~mm}$ mesh size. Estimated selectivity parameter L50: $3.5+0.09$	2018 (June)		5 hauls, 170 individuals sampled		5.76+-0.63					$1.78+-0.81$		0.71+-0.42	$\begin{gathered} \text { T0: } 0.51+- \\ 0.17 \end{gathered}$
Maurolicus muelleri,subset of AZTI JUVENA surveys	Graded pelagic trawl with 10 mm mesh at codend	$\begin{gathered} 2016-2020 \\ \text { (September) } \end{gathered}$		64 hauls, 2155 individuals measured		$5.32+0.39$							$1.56+0.38$	T0: 0.4 +-0.1

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temperature	Sample size (N)	Observed Standard Length (mm)	Von Bert. $L_{\text {inf }}$ (mm)	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/ Fecundity	Sex ratio	$\begin{gathered} \text { Natural } \\ \text { mortality } \\ M \\ \left(y^{-1}\right) \end{gathered}$	$\begin{gathered} \text { LW- } \\ \text { relationship } \end{gathered}$	Growth parameter k	Other
Maurolicus muelleri, IMR surveys 2008 -2012	Macrozooplank ton-net, $6 \times 6 \mathrm{~mm}$ mesh size	2008-2021		92 hauls, 1430 fish measured		5.68 + 1.03							1.38 +- 0.6	$\begin{gathered} \mathrm{T}=.0 .43+- \\ 0.15 \end{gathered}$

4.3 References

Mildenberger, T.K, Taylor, M.H., and Wolff, M. 2017. TropFishR: an R package for fisheries analysis with length-frequency data. Methods in Ecology and Evolution 2017 doi: 10.1111/2041-210X. 12791

5.0 Overview of Environmental Data Collated during MEESO Research Surveys Associated to Biological Sampling of Key Demographic (Biological) Parameters (MEESO Work Package 4)

5.1 Introduction

Table 5.1 gives an overview from MEESO WP4 of the different types of environmental data collated during different MEESO research surveys associated to the biological sampling used to determine key demographic parameters presented in Sections 3 and 4 of this report.

5.2 Initial Overview from MEESO WP4 of Environmental Data Collated during MEESO Research Surveys

Table 5.1. Overview table from MEESO WP4 of different types of environmental data sampled during different MEESO research surveys associated to the biological sampling of among other key demographic parameters.

Data Holder \& Measurements	Data Holder (Institute)	Environ CTD m	nmental Param easurements	neters of	interest				Water mea	asuremen							Hyperspec	tral measurements	Observatio	
Survey		Depth	Temperature	Salinity	Oxygen	Fluorescence	Transmittance	Irradiance	Chlaph	CDOM	POM	Nitrate	Nitrite	Silicate	Phosphate	Phaephytin	Hyperspectral surface	Hyperspectral water column	Sea state	Cloud cover
JUVENA 2013-2020	AZTI	x	x	x	x	x	x	x	x											
JUVENA 2019	AZTI	x	x	x	x	x	x	x	x											
JUVENA 2020	AZTI	x	x	x	x	x	x	x	x											
MEGS (no date?)	`AZTI	x	x	x					x											
BIoman 2020	AZTI	x	x	x					x											
BIoman 2021	AZTI	x	x	x					x											
WESPAS 2020	MI	x	x	x	x	x	-	-	- -	-	-	-	-	-	-	-	x^{*}	-	-	-
WESPAS 2021	мı	x	x	x	x	x	-	-	- -	-	-	-	-	-	-	- x^{*}	x^{*}	-	$x \quad x$	x
IBWSS 2021	MI	x	x	x	x	x	-	-	- -	x^{*}	-	-	-	-	-	- x^{*}	x^{*}	-	$x \quad x$	x
SINTEF 2019	SINTEF																			
IMR 2013	IMR	x	x	x	x	x	-	x	x	-	x	x	x	x	x	x	x	x	$x \quad x$	x
IMR2016	IMR	x	x	x	-	x	-	x	x	-	x	x	x	x	x	x	x	x	x	x
IMR 2018	IMR	x	x	x	x	x	-	x	x	-	x	x	x	x	x	x	x	x	X	X
IMR 2019	IMR	x	x	x	x	x	x	x	x	-	x	x	x	x	x	x	x	x	$x \quad x$	x
IMR 2020	IMR	x	x	x	x	x	-	x	x	-	x	x	x	x	x	x	x	x	$x \quad x$	x
MFRI 2010	MFRI	x	x	x					x										$x \quad x$	x
MFRI 2011	MFRI	x	x	x					x										x x ${ }^{\text {x }}$	x
MFRI 2013	MFRI	x	x	x					x										x x ${ }^{\text {x }}$	x
MFRI 2015	MFRI	x	x	x					x										$x \quad x$	\times
MFRI 2020	MFRI	x	*	x		x			x		x	x	x	x	x				x	\times

6.0 Key Demographic (Biological) Parameters for Pearlside (Maurolicus muelleri) Collated and Estimated from Commercial Fishery Sampling (MEESO Work Package 3 \& 5)

6.1 Introduction

Initial parameters obtained so far from outputs on the field campaign data sampling with provision and estimation of initial biological parameters from the commercial fishery sampling associated to the MEESO project (MEESO WP3 \& WP5). It should be emphasized that these parameters are initial and only very preliminary and that analyses are still ongoing on the input data from the commercial fishery sampling associated to MEESO. Accordingly, the parameters should be used with great caution.

6.2 Initial Results and Overview from Commercial Fishery Sampling

Table 6.1. Commercial Fishery-available parameters of life-history traits and biology of pearlside (Maurolicus muelleri) at different locations in different periods from sampling of commercial fishery.

Source \& Species	Survey and gear incl. selection parameters	Space and time	Sampling strategy/ Depth/ Temp	Sample size (N)	Observed Standard Length (mm)	Von Bert. $L_{\text {inf }}$ (mm)	Weight (g)	Von Bert. $\mathrm{W}_{\text {inf }}$ (g)	L50/ Maturity/ Fecundity	Sex ratio	Natural mortality M $\left(\mathrm{y}^{-1}\right)$	LW- relationship	$\begin{gathered} \text { Growth } \\ \text { parameter k } \end{gathered}$	Other
MFRI samples from commercial pearlside fishery 2009	Graded trawls	Fising grounds SW of Iceland	Commercial samples	54 samples/562 6 individuals	30-75							$\begin{aligned} & a=5.94^{*} 10^{-5} \\ & b=2.63 \end{aligned}$ 198 ind with Iwinfo		Age 0 to 3
MFRI samples from commercial pearlside fishery 2010	Graded trawls	Fising grounds SW of Iceland	Commercial samples	37 samples/403 7 individuals	30-75							$a=6.61 * 10^{-6}$ $b=3.17$ 90 ind with lw-info		Age 0 to 3
MFRI samples from commercial pearlside fishery 2011	Graded trawls	Fising grounds SW of Iceland	Commercial samples	$\begin{gathered} \hline 10 \\ \text { samples } / 120 \\ 0 \text { individuals } \end{gathered}$	35-75							$\begin{aligned} & \hline \begin{array}{l} a=4.36^{*} 10^{-6} \\ b=3.29 \end{array} \\ & \begin{array}{c} 450 \text { ind with lw- } \\ \text { info } \end{array} \\ & \hline \end{aligned}$		Age 1 to 2

7.0 Initial Commercial Fishing Gear Selectivity Parameters for Pearlside (Maurolicus muelleri) and Glacier Lantern Fish (Benthosema glaciale) as Estimated from the Fishing Technology Development Work Package 3

7.1 Introduction

This section provides the initial parameters obtained as outputs so far from the MEESO WP3 on fishing technology development for commercial trawl fishing gears with respect to, e.g., gear selectivity parameters.

7.2 Results and Overview of Initial Gear Selectivity Parameters from MEESO WP3

The size selectivity of Pearlsides (Maurolicus muelleri) and Glacier Lantern Fish (Benthosema glaciale) of three commercial mesopelagic trawl designs used in WP3 (with and without smallmesh liners) was assessed as a function of mesh size (MS), tapering angle (α) and mesh opening angle (OA) following five key steps:

In step 1 we used samples of pearlsides collected in July 2019 on board the pelagic trawler "Birkeland" off the western coast of Norway ($60^{\circ} 51^{\prime} \mathrm{N} 03^{\circ} 41^{\prime} \mathrm{E}$) using a Egersund 1200 m trawl. The samples of glacier lantern fish were collected in 2019, off the coast northern Norway ($69^{\circ} 32^{\prime} \mathrm{N}$ and $18^{\circ} 02^{\prime} \mathrm{E}$), on board the research vessel "Johan Ruud" using a standard Campelen sampling bottom trawl. All the samples were selected to cover wide span of length sizes.

In step 2, we conducted fall-through experiments (Herrmann et al 2012; Herrmann et al 2021) to test which length sizes of fish can geometrically pass through the mesh templates of different MS and OA. A total of 311 pearlsides and 71 glacier lanternfish were length measured to the nearest mm and presented head first and optimally oriented to 54 different mesh templates. Optimal orientation implies that each fish is positioned in such a way that maximizes its chance to pass through each mesh template (Fig. 3). The mesh templates perforated in 5 mm thick nylon plate (Figure 3) included six different mesh sizes: $6 \mathrm{~mm}, 12 \mathrm{~mm}$, $16 \mathrm{~mm}, 20 \mathrm{~mm}, 24 \mathrm{~mm}$ and 30 mm . Some of these mesh sizes corresponded to the mesh sizes of the small-meshed liners used in the trawls. For each mesh size we had nine different
opening angles: $10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}, 70^{\circ}, 80^{\circ}$ and 90°. The only force acting on the fish was gravity. Whether or not each fish passed through each mesh template was recorded as either a "yes" if it passed through the mesh template, or "no" if it did not (Fig 1).

Fig. 1: Fall-through experiment with optimally oriented pearlside.

In step 3, for each mesh template and length class (1 mm length class), the number of successful and unsuccessful passes were counted. The data were then treated as coveredcodend data (Wileman et al. 1996), where each fish that passed through the mesh template was considered to end up in the cover, while the others were treated as retained in the codend. The following logit size selection model was then fitted to each fall-through dataset to obtain a size selectivity curve for each mesh template:

$$
\begin{equation*}
r(L, l 50, S R)=\frac{e^{\frac{\ln (9)}{S R} \times(l-l 50)}}{1+e^{\frac{\ln (9)}{S R} \times(l-l 50)}} \tag{1}
\end{equation*}
$$

The I in (1) represents fish total length, 150 the length at which fish has 50% probability of being retained in the codend, $S R$ the selection range, which is equivalent to $I 75-125$. The estimated $I 50$ and $S R$ values, their covariance matrix, together with the corresponding $M S$ and $O A$ value for each mesh template were then used to establish the following predictive size selection model:

$$
\begin{aligned}
l 50 & =\alpha_{1} \times M S \times O A+\alpha_{2} \times M S \times O A^{2}+\alpha_{3} \times M S \times O A^{3}+\alpha_{4} \times M S \times O A^{4} \\
S R & =\beta_{1} \times M S \times O A+\beta_{2} \times M S \times O A^{2}+\beta_{3} \times M S \times O A^{3}+\beta_{4} \times M S \times O A^{4}
\end{aligned}
$$

(2)

The $\alpha_{1} \ldots \alpha_{4}$ and $B_{1} \ldots b_{4}$ in (2) are the model parameters that need to be estimated. All simpler sub-models obtained by leaving out one or more terms at a time from the (2) were also considered for predicting 150 and SR following the procedure described in Brčić et al. (2018) and Herrmann et al. (2021). From the total of 256 models for each species, the model with the lowest AICc value (AICc being the AIC (Akaike 1974) with a correction for finite sample size) was chosen as the best model.

In step 4, the best model for each species was applied to predict 150 and $S R$ values for each mesh template used in the fall-through experiment. To check for the model self-consistency, the model predictions were plotted together with their respective 95% confidence intervals against the $I 50$ and $S R$ values estimated by fitting a logit size selection model (1) to each fallthrough dataset. In case if predictions represent the trends in the fall-through data well, they were summarized in an isoline graph (lines with equal 150 values) called the design guides. The design guides depict how 150 values vary with the change in MS and OA (Brčić et al. 2018; Herrmann et al. 2021). While performing the fall-through experiments, we assumed that fish are optimally oriented when contacting the mesh. However, during the fishing, meshes are never perpendicular to the natural swimming path of the fish and fish often meet the meshes at suboptimal angle of attack (Fig 4). Fish that are good swimmers and are not exhausted from swimming in front of the trawl prior to entering it, are able to actively change their position to obtain optimal orientation and maximize their escapement probability. Knowing that pearlside and glacier lantern fish grow up to 8 cm and 10 cm , respectively, we assumed they encounter trawl meshes at suboptimal angle of attack (equal to, or close to the tapering angle of the section of the trawl where they encounter the meshes), and do not have enough strength to overcome a strong water flow inside the gear to actively change their position to obtain an optimal orientation and maximize escapement. As angle of attack/ tapering angle is decreasing towards the codend, the projection of the mesh is becoming narrower (Krag et al., 2014; Cuende et al., 2020) and fish are not able to fully utilize the mesh (Fig 2).

Fig 2. Illustration showing available mesh area as fish meets the mesh at optimal (90°, green) and suboptimal (blue) attack angle.

In step 5, we explored the effect of different angles of attack/tapering angles on the size selection of pearl side and glacier lantern fish in trawls. For each mesh size and opening angle considered, we calculated projected mesh size ($m s$) and projected mesh opening angle (oa) for different angles of attack/tapering angles (Fig 4) using formulas (3) - (8). Angles considered ranged from 5° to 90°, in steps of 5°.

$$
\begin{gather*}
\frac{M W}{2}=\frac{M S}{2} \times \cos \frac{o A}{2} \\
\frac{M L}{2}=\frac{M S}{2} \times \sin \frac{o A}{2} \\
\frac{m l}{2}=\frac{M W}{2} \times \sin T A \\
\frac{m W}{2}=\frac{M W}{2} \\
o a=\tan ^{-1} \frac{\frac{M W}{2}}{\frac{m l}{2}} \\
m s=\frac{2 \times \frac{M W}{2} \times \sin T A}{\cos \frac{o a 1}{2}},[o a 1=\min (o a, 180-o a)] \tag{8}
\end{gather*}
$$

For the most relevant MSs used in the trawls described in section 2.1 ($12,20,30$ and 40 mm) and opening angles ranging from $5-90^{\circ}$ the predicted 150 values using previously obtained each species' best model were summarized in isoline graphs. The dataset resulting from the above procedure was processed using the statistical software tool R (version 4.0.0; R Core Team (2020)). All plots were produced using the ggplot2 package (Wickham 2016).

Based on the fall through measurements we estimate the selection curves for different combinations of mesh sizes and opening angles (Fig. 3).

Figure 3. Prediction of selectivity curves for a 20 mm mesh size with different opening angles.

A total of 311 pearlsides and 71 glacier lanternfish were used in the fall-through experiments to obtain a fall-through dataset for each of the 54 different mesh templates. This resulted in 16,794 and 3,834 data points for pearlside and glacier lanternfish, respectively. The logit size selection (1) fitted to each of the fall-through dataset allowed obtaining I50 and SR for each mesh template which we subsequently used to establish a predictive model for size selection of pearlsides and glacier lanternfish in trawls. From the total of 256 models tested for each species, the following model yielded smallest AICc value (latter in text referred to as the best model) for both species:

$$
\begin{align*}
l 50 & =\alpha_{1} \times M S \times O A+\alpha_{2} \times M S \times O A^{2}+\alpha_{3} \times M S \times O A^{3} \\
S R & =\beta_{1} \times M S \times O A+\beta_{2} \times M S \times O A^{2} \tag{9}
\end{align*}
$$

The model coefficients obtained for each species are presented in Table 1.

Table 1. Results for fitting the best model (9) to the fall-through size selectivity data for pearlside and lanternfish. Values in brackets represent 95\% confidence intervals.

Species	Parameter	Factor	Value	P-value
Pearlside	L50 (mm)	α_{1}	1.35E-0.1 (1.26E-01-1.43E-0.1)	<0.0001
		α_{2}	-1.56E-03 (-1.56E-03--1.26E-03)	<0.0001
		α_{3}	$5.73 \mathrm{E}-06$ (3.31E-06-8.16E-06)	<0.0001
	$S R(m m)$	β_{1}	$5.41 \mathrm{E}-03$ (4.41E-03-6.42E-03)	<0.0001
		β_{2}	-4.09E-05 (-5.58E-05--2.60E-05)	<0.0001
Lanternfish	L50 (mm)	α_{1}	$1.02 \mathrm{E}-02$ (9.51E-03-1.10E-02)	<0.0001
		α_{2}	-1.07E-07 (-1.31E-04--8.29E-05)	<0.0001
		α_{3}	$3.70 \mathrm{E}-07$ (1.80E-07-5.60E-07)	<0.0001
	SR (mm)	β_{1}	$1.04 \mathrm{E}-03$ (7.10E-04-1.36E-03)	<0.0001
		β_{2}	-8.71E-06 (-1.33E-05--4.17E-06)	<0.0001

Using the best predictive model (9), the following design guides (Figure 4A \& 4B) were created depicting the effect of mesh size and mesh opening on size selection of pearlsides and glacier lanternfish optimally oriented when encountering trawl meshes. From both figures, we can see that decrease in mesh opening angle from 90° to $\sim 40^{\circ}$ has negligible effect on the L50 values for both species. Further decrease in opening angle results in lower L50 values. The increase in mesh size from 5 mm to $\sim 30 \mathrm{~mm}$ results in greater increase in 150 values, compared to the same increase in mesh size in the $\sim 30 \mathrm{~mm}$ to 60 mm range.

Fig 4: Design guides showing the effect of MS and OA on L50 values for optimally oriented pearlside (A) and glacier lanternfish (B). Considering that pearlside and glacier lanternfish grow up to 8 cm and 10 cm , respectively, more pronounced red color on the plot indicates greater catch loss of the species.

Figures 5 \& 6 illustrate how 150 values vary with the change in mesh opening angle and angle of attack for selected mesh sizes for pearlside and lanternfish, respectively. From both figures it is evident that lower mesh sizes (12 mm and 16 mm) are more suitable options for catching both species.

Figure 5. Predicted 150 values for Muller's pearlside (in mm) for different attack angles and mesh opening angles for selected mesh sizes ($11 \mathrm{~mm}, 17 \mathrm{~mm}, 20 \mathrm{~mm}, 24 \mathrm{~mm}, 30 \mathrm{~mm}, 40$ $\mathrm{mm})$. Considering that pearlside grows up to 8 cm , more pronounced red color on the plot indicates greater catch loss of the species.

Figure 6: Predicted 150 values for glacier lanternfish (in mm) for different attack angles and mesh opening angles for selected mesh sizes ($11 \mathrm{~mm}, 17 \mathrm{~mm}, 20 \mathrm{~mm}, 24 \mathrm{~mm}, 30 \mathrm{~mm}, 40$ mm). Considering that glacier lanternfish grows up to 8 cm , more pronounced red color on the plot indicates greater catch loss of the species.

7.2 References

Akaike 1974. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, AC- 19, 716-723. http://dx.doi.org/10.1109/TAC.1974.1100705
Brčić J., Herrmann B., Mašanović M., Šifner S.K., Škeljo F. (2018). CREELSELECT- A method for determining the optimal creel mesh: case study on Norway lobster (Nephrops norvegicus) fishery in the Mediterranean Sea. Fisheries Research 204: 433-440. https://doi.org/10.1016/i.fishres.2018.03.020
Cuende E., Arregi L., Herrmann B., Sistiaga M.B., Aboitiz. (2020). Prediction of square mesh panel and codend size selectivity of blue whiting based on fish morphology. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsaa156
Herrmann B., Sistiaga M., Nielsen K., Larsen R.B. (2012). Understanding the size selectivity of redfish (Sebastes spp.) in North Atlantic trawl codends. Journal of Northwest Atlantic Fishery Science 44: 1-13. http://dx.doi.org/10.2960/J.v44.m680

Herrmann, B., Grimaldo, E., Brčić, J., Cerbule, K., 2021. Modelling the effect of mesh size and opening angle on size selection and capture pattern in a snow crab (Chionoecetes opilio) pot fishery, Ocean \& Coastal Management, Volume 201, 2021, 105495, ISSN 0964-5691, https://doi.org/10.1016/j.ocecoaman.2020.105495.
Krag, Ludvig Ahm; Herrmann, Bent; Iversen, Svein Arnholt; Engås, Arill; Nordrum, Sigve; Krafft, Bjørn Arne. Size selection of antarctic krill (Euphausia superba) in trawls. PLOS ONE 2014; Volum 9. (8:e102168)
Wileman D.A., Ferro R.S.T., Fonteyne R., Millar R.B. (Eds) (1996) Manual of methods of measuring the selectivity of towed fishing gears. ICES Cooperative Research Report No. 215.

[^0]: Maurolicus muelleri in NE Atlantic/Norway
 Maurolicus muelleri in other regions
 Maurolicus stehmanni

