

EU-H2020 MEESO Ecologically and Economically Sustainable Mesopelagic Fisheries. DA Number 817669.

Modelling Mesopelagic fish with the "StrathSpace" approach

Douglas C. Speirs d.c.speirs@strath.ac.uk

The Modelling Challenge

- Physiologically and spatially explicit demographic model
- Ocean-basin scale advection plus diffusion
- Hypothesis tests require wide parameter exploration
- Need exceptional computational efficiency

$$g(w) = A w^{n} - \epsilon_{a}w - \epsilon_{r}\psi_{m}(w)w$$

$$N(w) = \frac{R}{g(w)w_{r}}\exp\left(-\int_{w_{r}}^{w}\frac{\mu(x)}{g(x)}dx\right)$$

$$\frac{dg(w)N(w)}{dw} = -\mu(w)N(w)$$

$$\mu(w) = aA w^{n-1} + F\psi_{F}(w)$$

$$S(a) = exp\left[-\int_{0}^{a}\delta(x)dx\right]$$

$$\frac{\partial f}{\partial t} = -\frac{\partial f}{\partial a} - \delta(a,t)f$$

$$\int_{0}^{\infty}\beta(a)S(a)e^{-\lambda a} = 1$$

Our Solution

- Focus on single species
- Computationally efficient discrete-space and discrete-time approach
- In space the population is divided in a grid of horizontal cells.
- Vertically, there are two layers the surface (top 100m) and a deep layer (c. 400m) for adults.
- Separate computation of physical (movement) and biological (growth) components
- The probability of moving between cells is calculated by Lagrangian particle tracking using a General Circulation Model (GCM).
- Gives $\sim 10^4$ speed-up relative to Lagrangian ensemble

Representing Physical Transport

Update at regularly spaced times: T_i

$$C_{q,x,T_i}^+ = \sum_{y} \Psi_{x,y,T_i} C_{q,y,T_i}^-$$

 $C_{q,x,T_i}^- \equiv$ Class abundance just before update

 $C_{q,x,T_i}^+ \equiv$ Class abundance just after update

$$\Psi_{x,y,T_i} \equiv \begin{array}{l} \text{Transfer matrix element from y to x} \\ \text{for period to } T_i \text{. Determined by} \\ \text{particle tracking in flow fields from} \\ \text{GCM plus random (diffusive)} \\ \text{component.} \end{array}$$

Updating the Biological Model

At each spatial cell and length class

• Calculate the increase in body length that occurs in a time-step and according to the von Bertalanffy growth equation

$$\Delta L = (L_{\infty} - L)(1 - e^{-\gamma \Delta t})$$

$$L_{\infty} = L_{max}F/(F_h + F)$$

$$\gamma(T) = \gamma_0 Q_{10}^{(T-T_0)/10}$$

- For each source length class move surviving individuals (after applying a mortality rate) to destination length class
- If in spawning period calculate the eggs produced and add to the egg class

Updating the system state

For each spatial cell, in turn:

- Grow (increase in length) the population over all length over a growth time-step
- Remove individuals by applying mortality over the time-step
- If the time is greater than the next transport time-step then stop

Do next transport update, output state variables and repeat.

Produces model realisations in good agreement with PDE and Lagrangian ensemble solutions, but MUCH faster.

The StrathSPACE model of Benthosema glaciale

- Discrete time and space closed life-cycle population model
- Length structured population
- Von Bertalanffy growth
- Planktonic larvae
- Biodiffusive adults
- Temperature-dependent growth and mortality
- Transport and temperature from NEMO model, National Oceanography Centre (NOC), Southampton, for 1980-2099, with RCP 8.5 for forward run, for the whole Atlantic.
- Population model very fast (1-5 seconds per model year).

Projected (2025) surface temperature from the NEMO model

<u>StrathSPACE Benthosema model outputs – spatial distribution</u>

Adult distribution [tonnes/km2] - 1988

StrathSPACE *Benthosema* model hindcast and forward run 1988-2050

<u>StrathSPACE Benthosema model outputs – length distribution</u>

<u>StrathSPACE Benthosema model outputs – abundance time series</u>

Forward run Benthosema model